
Improving HotSpot
Scalar Replacement

Cesar Soares aka @JohnTortugo

Senior Compiler Engineer

Microsoft Developer Division

Java Engineering Group (JEG)

Agenda

What is Scalar Replacement?

Why is it important?1

How did we improve HotSpot

Scalar Replacement?2

Show me the numbers!3

Conclusion4

What is OpenJDK HotSpot?

JAVAC JVM.java
.class /
.jar

What is OpenJDK HotSpot?

JAVAC JVM.java
.class /
.jar

GC

C1
JIT

C2
JIT

Interpreter Cache

Parser

J V M

What is Scalar Replacement?

⚫ Scalar Replacement is a compiler optimization.

⚫ Built on top of Escape Analysis and Method Inlining.

⚫It decomposes objects into its constituent fields.

⚫The goal: to remove object allocations.

Why is it important?

Fewer Allocations

Less Code

Better Code

Help to reduce number of objects allocated and therefore
helps to increases cache locality and reduce time spent in GC.

Transforms memory access into register access. Remove
need of pointer manipulation to access fields.

Simplify the code and make it more amenable to
other optimizations.

Running Example

We’ll use this class

throughout the examples.

The important part is the

Checksum method.

public class Message() {

String content;

public Message(String content) {

 this.content = content;

 }

public int Checksum() {

 int chks = 0;

 for (int i=0; i<content.length(); i++) {

 chks += content.charAt(i);

 }

 return chks;

 }

}

The Simple Case

Before Scalar Replacement

public int CompositeChecksum(List<String> messages) {

 int checksum = 0;

 for (String msg : messages) {

 Message m = new Message(msg);

 int cs = m.CheckSum();

 checksum += cs;

 }

 return checksum;

}

The Simple Case

During Scalar Replacement

public int CompositeChecksum(List<String> messages) {

 int checksum = 0;

 for (String msg : messages) {

<Message’s constructor code copied here>

 int cs = <Message’s CheckSum() method copied here>

 checksum += cs;

 }

 return checksum;

}

The Simple Case

During Scalar Replacement

public int CompositeChecksum(List<String> messages) {

 int checksum = 0;

 for (String msg : messages) {

String content = msg;

int chks = 0;

for (int i=0; i<content.length(); i++) chks += content.charAt(i);

 int cs = chks;

 checksum += cs;

 }

 return checksum;

}

The Simple Case

After Scalar Replacement

public int CompositeChecksum(List<String> messages) {

 int checksum = 0;

 for (String msg : messages) {

 for (int i=0; i<msg.length(); i++)

 checksum += msg.charAt(i);

 }

 return checksum;

}

Improving HotSpot Scalar Replacement

A Not So Simple Case

Control Flow Merge

public int CompositeChecksum(List<String> messages) {

 int checksum = 0;

 for (String msg : messages) {

Message m = msg != null ? new Message(msg) : new Message(“Clear”);

 int cs = m.CheckSum();

 checksum += cs;

 }

 return checksum;

}

See other cases here: https://tinyurl.com/2dwb3z3e

https://tinyurl.com/2dwb3z3e

A Not So Simple Case

Control Flow Merge

public int CompositeChecksum(List<String> messages) {

 int checksum = 0;

 for (String msg : messages) {

Message m = msg != null ? new Message(msg) : new Message(“Clear”);

 int cs = m.CheckSum();

 checksum += cs;

 }

 return checksum;

}

See other cases here: https://tinyurl.com/2dwb3z3e

https://tinyurl.com/2dwb3z3e

public static String whichPayload(String payload) {

 Message m = (payload != null) ?

 new Message(payload) :

 new Message(“Clear”);

 return m.content;

}

Let's suppose all we must worry about are field loads.

How C2 Represents this Method

How C2 Represents this Method
Allocate the objects

How C2 Represents this Method
Allocate the objects

Cast memory pointer to object type

How C2 Represents this Method
Allocate the objects

Cast memory pointer to object type

Decide which
object
to return

How C2 Represents this Method
Allocate the objects

Cast memory pointer to object type

Decide which
object
to return

Compute address of
field at offset 12

How C2 Represents this Method
Allocate the objects

Cast memory pointer to object type

Decide which
object
to return

Compute address of
field at offset 12

Load
field
value

How C2 Represents this Method
Allocate the objects

Cast memory pointer to object type

Decide which
object
to return

Compute address of
field at offset 12

Load
field
value

Return the value

How C2 Represents this Method

Decide which
object
to return

C2 does NOT scalar replace the objects if
the field load is AFTER the decision of
which object to load the field from.

How did we solve it

How did we solve it

Represent the field
load first.

How did we solve it

Represent the field
load first.

Decide which load should
be used instead of which
object.

public static String whichPayload(String payload) {

 Message content = (payload != null) ?

 new Message(payload).content :

 new Message(“Clear”).content;

 return content;

}

The conditional is now used to decide which loaded
value to use, instead of which object to load from.

public static String whichPayload(String payload) {

 return (payload != null) ? payload : “Clear”;

}

After both objects are scalar replaced.

How C2 Represents this Method

• Thousands of nodes.

• Memory graph updates.

• Cooperate with other optimizations.

• Handle a variety object use cases.

• Handle deoptimizations.

• Don't break existing code.

Proposed changes so far

https://github.com/openjdk/jdk/pull/15825

https://github.com/openjdk/jdk/pull/12829

https://github.com/openjdk/jdk/pull/15825
https://github.com/openjdk/jdk/pull/15825
https://github.com/openjdk/jdk/pull/12829

Execution Time of Synthetic Benchmarks

Execution Time of Renaissance Benchmarks

Conclusions
• C2 wasn’t scalar replacing some object allocation merges.

• Identifying a solution was ”easy enough”.

• Implementing the solution was challenging.

• Changes resulted in noticeable performance improvements in

several synthetic and real-world benchmarks.

Thank you!

... and feel free to reach out:

 @JohnTortugo
 disoares@microsoft.com

	Light
	Slide 1: Improving HotSpot Scalar Replacement
	Slide 2: Agenda
	Slide 3: What is OpenJDK HotSpot?
	Slide 4: What is OpenJDK HotSpot?
	Slide 5: What is Scalar Replacement?
	Slide 6: Why is it important?
	Slide 7: Running Example
	Slide 8: The Simple Case
	Slide 9: The Simple Case
	Slide 10: The Simple Case
	Slide 11: The Simple Case
	Slide 12: Improving HotSpot Scalar Replacement
	Slide 13: A Not So Simple Case
	Slide 14: A Not So Simple Case
	Slide 15
	Slide 16: How C2 Represents this Method
	Slide 17: How C2 Represents this Method
	Slide 18: How C2 Represents this Method
	Slide 19: How C2 Represents this Method
	Slide 20: How C2 Represents this Method
	Slide 21: How C2 Represents this Method
	Slide 22: How C2 Represents this Method
	Slide 23: How C2 Represents this Method
	Slide 24: How did we solve it
	Slide 25: How did we solve it
	Slide 26: How did we solve it
	Slide 27
	Slide 28
	Slide 29: How C2 Represents this Method
	Slide 30: Proposed changes so far
	Slide 31: Execution Time of Synthetic Benchmarks
	Slide 32: Execution Time of Renaissance Benchmarks
	Slide 33: Conclusions
	Slide 34: Thank you!

